模型反转攻击(MIAS)旨在创建合成图像,通过利用模型的学习知识来反映目标分类器的私人培训数据中的班级特征。先前的研究开发了生成的MIA,该MIA使用生成的对抗网络(GAN)作为针对特定目标模型的图像先验。这使得攻击时间和资源消耗,不灵活,并且容易受到数据集之间的分配变化的影响。为了克服这些缺点,我们提出了插头攻击,从而放宽了目标模型和图像之前的依赖性,并启用单个GAN来攻击广泛的目标,仅需要对攻击进行少量调整。此外,我们表明,即使在公开获得的预训练的gan和强烈的分配转变下,也可以实现强大的MIA,而先前的方法无法产生有意义的结果。我们的广泛评估证实了插头攻击的鲁棒性和灵活性,以及​​它们创建高质量图像的能力,揭示了敏感的类特征。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
We consider distributed learning in the presence of slow and unresponsive worker nodes, referred to as stragglers. In order to mitigate the effect of stragglers, gradient coding redundantly assigns partial computations to the worker such that the overall result can be recovered from only the non-straggling workers. Gradient codes are designed to tolerate a fixed number of stragglers. Since the number of stragglers in practice is random and unknown a priori, tolerating a fixed number of stragglers can yield a sub-optimal computation load and can result in higher latency. We propose a gradient coding scheme that can tolerate a flexible number of stragglers by carefully concatenating gradient codes for different straggler tolerance. By proper task scheduling and small additional signaling, our scheme adapts the computation load of the workers to the actual number of stragglers. We analyze the latency of our proposed scheme and show that it has a significantly lower latency than gradient codes.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Over-the-air computation has the potential to increase the communication-efficiency of data-dependent distributed wireless systems, but is vulnerable to eavesdropping. We consider over-the-air computation over block-fading additive white Gaussian noise channels in the presence of a passive eavesdropper. The goal is to design a secure over-the-air computation scheme. We propose a scheme that achieves MSE-security against the eavesdropper by employing zero-forced artificial noise, while keeping the distortion at the legitimate receiver small. In contrast to former approaches, the security does not depend on external helper nodes to jam the eavesdropper's receive signal. We thoroughly design the system parameters of the scheme, propose an artificial noise design that harnesses unused transmit power for security, and give an explicit construction rule. Our design approach is applicable both if the eavesdropper's channel coefficients are known and if they are unknown in the signal design. Simulations demonstrate the performance, and show that our noise design outperforms other methods.
translated by 谷歌翻译
Diffusion models have quickly become the go-to paradigm for generative modelling of perceptual signals (such as images and sound) through iterative refinement. Their success hinges on the fact that the underlying physical phenomena are continuous. For inherently discrete and categorical data such as language, various diffusion-inspired alternatives have been proposed. However, the continuous nature of diffusion models conveys many benefits, and in this work we endeavour to preserve it. We propose CDCD, a framework for modelling categorical data with diffusion models that are continuous both in time and input space. We demonstrate its efficacy on several language modelling tasks.
translated by 谷歌翻译
Current state-of-the-art deep neural networks for image classification are made up of 10 - 100 million learnable weights and are therefore inherently prone to overfitting. The complexity of the weight count can be seen as a function of the number of channels, the spatial extent of the input and the number of layers of the network. Due to the use of convolutional layers the scaling of weight complexity is usually linear with regards to the resolution dimensions, but remains quadratic with respect to the number of channels. Active research in recent years in terms of using multigrid inspired ideas in deep neural networks have shown that on one hand a significant number of weights can be saved by appropriate weight sharing and on the other that a hierarchical structure in the channel dimension can improve the weight complexity to linear. In this work, we combine these multigrid ideas to introduce a joint framework of multigrid inspired architectures, that exploit multigrid structures in all relevant dimensions to achieve linear weight complexity scaling and drastically reduced weight counts. Our experiments show that this structured reduction in weight count is able to reduce overfitting and thus shows improved performance over state-of-the-art ResNet architectures on typical image classification benchmarks at lower network complexity.
translated by 谷歌翻译
Named Entity Recognition and Intent Classification are among the most important subfields of the field of Natural Language Processing. Recent research has lead to the development of faster, more sophisticated and efficient models to tackle the problems posed by those two tasks. In this work we explore the effectiveness of two separate families of Deep Learning networks for those tasks: Bidirectional Long Short-Term networks and Transformer-based networks. The models were trained and tested on the ATIS benchmark dataset for both English and Greek languages. The purpose of this paper is to present a comparative study of the two groups of networks for both languages and showcase the results of our experiments. The models, being the current state-of-the-art, yielded impressive results and achieved high performance.
translated by 谷歌翻译
我们研究了欧洲排放津贴(EUA)的价格,从而分析了它们对相关能源市场的不确定性和依赖性。我们提出了一个概率的多元条件时间序列模型,该模型利用数据的关键特征。在广泛的滚动窗口预测研究中评估了提议模型和各种竞争模型的预测性能,涵盖了将近两年的样本外。因此,我们预测了30步。多元概率预测的准确性由能量评分评估。鉴于俄罗斯对乌克兰的入侵,我们还讨论了着重于波动性溢出和随时间变化的相关性的发现。
translated by 谷歌翻译
尽管当代的大语言模型(LMS)表现出令人印象深刻的提问功能,但它们的答案通常是单个呼吁模型的产物。这需要不受欢迎的不透明度和损害性能,尤其是在本质上是多步骤的问题上。为了解决这些局限性,我们可以通过一个过程通过因果结构反映了问题的基本逻辑结构的过程来展示如何制作LMS来执行忠实的多步推理。我们的方法是通过将推理步骤链接在一起的,每个步骤都来自调用两个微调的LMS,一个用于选择,一种用于推理,以产生有效的推理跟踪。我们的方法在推理轨迹的空间中进行了光束搜索,以提高推理质量。我们证明了模型对多步逻辑推论和科学提问的有效性,表明它在最终答案的准确性上优于基准,并生成可解释的人类解释的推理痕迹,其有效性可以由用户检查。
translated by 谷歌翻译